从源码角度来解读内核的轮询机制,了解是如何实现事件监控功能的
kernel/fs/select.c
kernel/include/linux/poll.h
kernel/include/linux/fs.h
kernel/include/linux/sched.h
kernel/include/linux/wait.h
kernel/kernel/sched/wait.c
kernel/kernel/sched/core.c
一、概述
在前面的文章select/poll/epoll对比分析,从使用者的角度讲述了三者之间的关系。select/poll/epoll都是IO多路监控机制,通过监控文件描述符读写状态来通知相应程序执行操作的一个机制。再往深处问一个他们底层又是如何实现,可以做得监控文件状态的功能呢?本文先回顾select/poll机制的使用与源码,下一篇文章再来单独能实现高并发的epoll机制。
1.1 select函数
int select (int n, fd_set *readfds,
fd_set *writefds,
fd_set *exceptfds,
struct timeval *timeout);
struct timeval {
long tv_sec; //秒
long tv_usec; //毫秒
};
select最终是通过底层驱动对应设备文件的poll函数来查询是否有可用资源(可读或者可写),如果没有则睡眠。
1.2 poll函数
int poll (struct pollfd *fds, unsigned int nfds, int timeout);
struct pollfd {
int fd;
short events;
short revents;
};
接下来,进入正题从源码角度来解读select和poll两种机制。
二、select源码
select最终是通过底层驱动对应设备文件的poll函数来查询是否有可用资源(可读或者可写),如果没有则睡眠。
2.1 fd_set
在讲select机制之前,先来认知一下参数中的一个结构体fd_set,代码如下所示。
#include <sys/select.h>
#define FD_SETSIZE 1024
#define NFDBITS (8 * sizeof(unsigned long))
#define __FDSET_LONGS (FD_SETSIZE/NFDBITS)
typedef struct {
unsigned long fds_bits[__FDSET_LONGS];
} fd_set;
void FD_SET(int fd, fd_set *fdset) //将fd添加到fdset
void FD_CLR(int fd, fd_set *fdset) //从fdset中删除fd
void FD_ISSET(int fd, fd_set *fdset) //判断fd是否已存在fdset
void FD_ZERO(fd_set *fdset) //初始化fdset内容全为0
fd_set是一个文件描述符fd的集合,由于每个进程可打开的文件描述符默认值为1024,fd_set可记录的fd个数上限也是为1024个。 从下面代码可知,fd_set采用位图bitmap算法,位图是一个比较经典的算法,此处创建一个大小为32的long型数组,每一个bit代表一个0~1023区间的数字。 可通过上述的4个FD_XXX()宏来操作fd_set数组。
2.2 sys_select
select系统调用对应的方法是sys_select,具体代码如下:
[-> fs/select.c]
SYSCALL_DEFINE5(select, int, n, fd_set __user *, inp, fd_set __user *, outp,
fd_set __user *, exp, struct timeval __user *, tvp)
{
struct timespec end_time, *to = NULL;
struct timeval tv;
int ret;
if (tvp) { // 设置超时阈值
if (copy_from_user(&tv, tvp, sizeof(tv)))
return -EFAULT;
to = &end_time;
if (poll_select_set_timeout(to,
tv.tv_sec + (tv.tv_usec / USEC_PER_SEC),
(tv.tv_usec % USEC_PER_SEC) * NSEC_PER_USEC))
return -EINVAL;
}
// 见【小节2.3】
ret = core_sys_select(n, inp, outp, exp, to);
ret = poll_select_copy_remaining(&end_time, tvp, 1, ret); //更新超时
return ret;
}
2.3 core_sys_select
int core_sys_select(int n, fd_set __user *inp, fd_set __user *outp,
fd_set __user *exp, struct timespec *end_time)
{
fd_set_bits fds;
void *bits;
int ret, max_fds;
unsigned int size;
struct fdtable *fdt;
//创建大小为256的数组
long stack_fds[SELECT_STACK_ALLOC/sizeof(long)];
rcu_read_lock();
fdt = files_fdtable(current->files);
max_fds = fdt->max_fds;
rcu_read_unlock();
if (n > max_fds)
n = max_fds; //select可监控个数小于等于进程可打开的文件描述上限
////根据n来计算需要多少个字节, 展开为size=4*(n+32-1)/32
size = FDS_BYTES(n);
bits = stack_fds;
//需要6个bitmaps (int/out/ex 以及其对应的3个结果集)
if (size > sizeof(stack_fds) / 6) {
bits = kmalloc(6 * size, GFP_KERNEL);
}
fds.in = bits;
fds.out = bits + size;
fds.ex = bits + 2*size;
fds.res_in = bits + 3*size;
fds.res_out = bits + 4*size;
fds.res_ex = bits + 5*size;
//将用户空间的inp、outp、exp拷贝到内核空间fds的in、out、ex
if ((ret = get_fd_set(n, inp, fds.in)) ||
(ret = get_fd_set(n, outp, fds.out)) ||
(ret = get_fd_set(n, exp, fds.ex)))
goto out;
//将fds的res_in、res_out、res_ex内容清零 [小节2.3.1]
zero_fd_set(n, fds.res_in);
zero_fd_set(n, fds.res_out);
zero_fd_set(n, fds.res_ex);
ret = do_select(n, &fds, end_time); // 核心方法【小节2.4】
if (ret < 0)
goto out;
if (!ret) {
ret = -ERESTARTNOHAND;
if (signal_pending(current))
goto out;
ret = 0;
}
//将fds的res_in、res_out、res_ex结果拷贝到用户空间inp、outp、exp
if (set_fd_set(n, inp, fds.res_in) ||
set_fd_set(n, outp, fds.res_out) ||
set_fd_set(n, exp, fds.res_ex))
ret = -EFAULT;
out:
if (bits != stack_fds)
kfree(bits);
out_nofds:
return ret;
}
select方法的主要工作可分为3部分:
- 将需要监控的用户空间的inp(可读)、outp(可写)、exp(异常)事件拷贝到内核空间fds的in、out、ex;
- 执行do_select()方法,将in、out、ex监控到的事件结果写入到res_in、res_out、res_ex;
- 将内核空间fds的res_in、res_out、res_ex事件结果信息拷贝回用户空间inp、outp、exp。
select执行过程用到了数据结构fd_set_bits,里面有6个long数组,占用空间有两种情况:
- 当size<=42时,则为256个long型数组
- 当size>42时,则为6*size大小
这里的size=4*(n+32-1)/32,其中n是监控文件fd的最大值+1。
2.3.1 fdset相关操作方法
//记录可读、可写、异常 的输入和输出结果信息
typedef struct {
unsigned long *in, *out, *ex;
unsigned long *res_in, *res_out, *res_ex;
} fd_set_bits;
// 将用户空间的ufdset拷贝到内核空间fdset
static inline
int get_fd_set(unsigned long nr, void __user *ufdset, unsigned long *fdset)
{
nr = FDS_BYTES(nr);
if (ufdset)
return copy_from_user(fdset, ufdset, nr) ? -EFAULT : 0;
memset(fdset, 0, nr);
return 0;
}
// 将内核fdset拷贝到用户空间的ufdset
static inline unsigned long __must_check
set_fd_set(unsigned long nr, void __user *ufdset, unsigned long *fdset)
{
if (ufdset)
return __copy_to_user(ufdset, fdset, FDS_BYTES(nr));
return 0;
}
//将fdset内容清零
static inline
void zero_fd_set(unsigned long nr, unsigned long *fdset)
{
memset(fdset, 0, FDS_BYTES(nr));
}
2.3.2 struct poll_wqueues
struct poll_wqueues {
poll_table pt; //[小节2.3.3]
struct poll_table_page *table; //[小节2.3.4]
struct task_struct *polling_task; //正在轮询的进程
int triggered;
int error;
int inline_index;
//记录poll信息的数组 [小节2.3.5]
struct poll_table_entry inline_entries[N_INLINE_POLL_ENTRIES];
};
2.3.3 struct poll_table
typedef struct poll_table_struct {
poll_queue_proc _qproc;
unsigned long _key;
} poll_table;
2.3.4 struct poll_table_page
struct poll_table_page {
struct poll_table_page * next;
struct poll_table_entry * entry;
struct poll_table_entry entries[0];
};
2.3.5 struct poll_table_entry
struct poll_table_entry {
struct file *filp;
unsigned long key;
wait_queue_t wait; //wait等待队列项
wait_queue_head_t *wait_address; //wait的等待队列头
};
接下来,重点看看核心方法do_select源码:
2.4 do_select
int do_select(int n, fd_set_bits *fds, struct timespec *end_time)
{
ktime_t expire, *to = NULL;
struct poll_wqueues table; //[小节2.3.2]
poll_table *wait; //[小节2.3.3]
int retval, i, timed_out = 0;
u64 slack = 0;
rcu_read_lock();
retval = max_select_fd(n, fds);
rcu_read_unlock();
n = retval;
poll_initwait(&table); //初始化等待队列 【小节2.4.1】
wait = &table.pt;
if (end_time && !end_time->tv_sec && !end_time->tv_nsec) {
wait->_qproc = NULL;
timed_out = 1;
}
if (end_time && !timed_out)
slack = select_estimate_accuracy(end_time);
retval = 0;
for (;;) {
unsigned long *rinp, *routp, *rexp, *inp, *outp, *exp;
bool can_busy_loop = false;
inp = fds->in; outp = fds->out; exp = fds->ex;
rinp = fds->res_in; routp = fds->res_out; rexp = fds->res_ex;
for (i = 0; i < n; ++rinp, ++routp, ++rexp) {
unsigned long in, out, ex, all_bits, bit = 1, mask, j;
unsigned long res_in = 0, res_out = 0, res_ex = 0;
in = *inp++; out = *outp++; ex = *exp++;
all_bits = in | out | ex;
if (all_bits == 0) {
i += BITS_PER_LONG; //以32bits步长遍历位图,直到在该区间存在目标fd
continue;
}
for (j = 0; j < BITS_PER_LONG; ++j, ++i, bit <<= 1) {
struct fd f;
if (i >= n)
break;
if (!(bit & all_bits))
continue;
f = fdget(i); //找到目标fd
if (f.file) {
const struct file_operations *f_op;
f_op = f.file->f_op;
mask = DEFAULT_POLLMASK;
if (f_op->poll) {
wait_key_set(wait, in, out, bit, busy_flag);
//执行文件系统的poll函数,检测IO事件,见【小节2.4.2】
mask = (*f_op->poll)(f.file, wait);
}
fdput(f);
//写入in/out/ex相对应的结果
if ((mask & POLLIN_SET) && (in & bit)) {
res_in |= bit;
retval++;
wait->_qproc = NULL;
}
if ((mask & POLLOUT_SET) && (out & bit)) {
res_out |= bit;
retval++;
wait->_qproc = NULL;
}
if ((mask & POLLEX_SET) && (ex & bit)) {
res_ex |= bit;
retval++;
wait->_qproc = NULL;
}
//当返回值不为零,则停止循环轮询
if (retval) {
can_busy_loop = false;
busy_flag = 0;
} else if (busy_flag & mask)
can_busy_loop = true;
}
}
//本轮循环遍历完成,则更新fd事件的结果
if (res_in)
*rinp = res_in;
if (res_out)
*routp = res_out;
if (res_ex)
*rexp = res_ex;
cond_resched(); //让出cpu给其他进程运行,类似于上层的yield
}
wait->_qproc = NULL;
//当有文件描述符准备就绪 或者超时 或者 有待处理的信号,则退出循环
if (retval || timed_out || signal_pending(current))
break;
if (table.error) {
retval = table.error;
break;
}
if (can_busy_loop && !need_resched()) {
if (!busy_end) {
busy_end = busy_loop_end_time();
continue;
}
if (!busy_loop_timeout(busy_end))
continue;
}
busy_flag = 0;
if (end_time && !to) { //首轮循环设置超时
expire = timespec_to_ktime(*end_time);
to = &expire;
}
//设置当前进程状态为TASK_INTERRUPTIBLE,进入睡眠直到超时,见【小节2.4.4】
if (!poll_schedule_timeout(&table, TASK_INTERRUPTIBLE,
to, slack))
timed_out = 1;
}
poll_freewait(&table); //释放poll等待队列【小节2.4.6】
return retval;
}
do_select最核心的还是调用文件系统*f_op->poll函数,来检测I/O事件(比如fd可读或者可写)。
- 当存在被监控的fd触发目标事件,则将其fd记录下来,退出循环体,返回用户空间;
- 当没有找到目标事件,如果已超时或者有待处理的信号,也会退出循环体,返回空给用户空间;
- 当以上两种情况都不满足,则会让当前进程进入休眠状态,以等待fd或者超时定时器来唤醒自己,再走一遍循环。
2.4.1 poll_initwait
void poll_initwait(struct poll_wqueues *pwq)
{
init_poll_funcptr(&pwq->pt, __pollwait); //初始化poll函数指针
pwq->polling_task = current; //将当前进程记录在pwq结构体
pwq->triggered = 0;
pwq->error = 0;
pwq->table = NULL;
pwq->inline_index = 0;
}
将结构体poll_wqueues->poll_table->poll_queue_proc赋值为__pollwait,__pollwait会在[2.4.2]的poll过程调用。
static inline void init_poll_funcptr(poll_table *pt, poll_queue_proc qproc)
{
pt->_qproc = qproc;
pt->_key = ~0UL; //所有的事件使能
}
typedef void (*poll_queue_proc)(struct file *,
wait_queue_head_t *, struct poll_table_struct *);
2.4.2 file_operations->poll
struct file_operations设备驱动的操作函数,每个文件系统都有自己的一套文件操作集合,下列列举file_operations结构体的部分 常见成员函数:
struct file_operations {
struct module *owner;
loff_t (*llseek) (struct file *, loff_t, int);
ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
//轮询方法 【小节2.4.2】
unsigned int (*poll) (struct file *, struct poll_table_struct *);
long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
int (*mmap) (struct file *, struct vm_area_struct *);
int (*open) (struct inode *, struct file *);
...
};
回到前面的核心函数调用(*f_op->poll)(f.file, wait),就是等于调用文件系统的poll方法,不同驱动设备实现方法略有不同,但都会执行poll_wait(),该方法真正执行的便是前面的回调函数__pollwait,把自己挂入等待队列。
2.4.3 __pollwait
static void __pollwait(struct file *filp, wait_queue_head_t *wait_address,
poll_table *p)
{
//根据poll_wqueues的成员pt指针p找到所在的poll_wqueues结构指针
struct poll_wqueues *pwq = container_of(p, struct poll_wqueues, pt);
struct poll_table_entry *entry = poll_get_entry(pwq);
if (!entry)
return;
entry->filp = get_file(filp);
entry->wait_address = wait_address;
entry->key = p->_key;
//设置entry->wait.func = pollwake 【小节2.4.5】
init_waitqueue_func_entry(&entry->wait, pollwake);
entry->wait.private = pwq; // 设置private内容为pwq
add_wait_queue(wait_address, &entry->wait); // 将该pollwake加入到等待链表头
}
static inline void
init_waitqueue_func_entry(wait_queue_t *q, wait_queue_func_t func)
{
q->flags = 0;
q->private = NULL;
q->func = func; //设置唤醒回调函数
}
要理解__pollwait()方法,需要先掌握Linux等待队列的sleep/wakeup机制。此处调用add_wait_queue(),将entry->wait加入到等待队列头wait_address中,另外此处wait->func唤醒回调函数为pollwake函数。
2.4.4 poll_schedule_timeout
int poll_schedule_timeout(struct poll_wqueues *pwq, int state,
ktime_t *expires, unsigned long slack)
{
int rc = -EINTR;
set_current_state(state); //设置进程状态
if (!pwq->triggered) //设置超时
rc = schedule_hrtimeout_range(expires, slack, HRTIMER_MODE_ABS);
__set_current_state(TASK_RUNNING);
smp_store_mb(pwq->triggered, 0);
return rc;
}
此时进程已处于睡眠状态, 当其他进程就绪事件发生时便会唤醒相应等待队列上的进程。比如监控的是可写事件,则会在write()方法中调用wakeup方法唤醒相对应的等待队列上的进程,接下来看看select.c中的pollwake函数。
2.4.5 pollwake
static int pollwake(wait_queue_t *wait, unsigned mode, int sync, void *key)
{
struct poll_table_entry *entry;
entry = container_of(wait, struct poll_table_entry, wait);
if (key && !((unsigned long)key & entry->key))
return 0;
return __pollwake(wait, mode, sync, key);
}
static int __pollwake(wait_queue_t *wait, unsigned mode, int sync, void *key)
{
struct poll_wqueues *pwq = wait->private;
DECLARE_WAITQUEUE(dummy_wait, pwq->polling_task); //创建dummy_wait等待队列项
smp_wmb();
pwq->triggered = 1;
//唤醒目标进程
return default_wake_function(&dummy_wait, mode, sync, key);
}
当该进程执行完后面的操作会进入睡眠状态,当处于睡眠状态时就绪事件触发,则会回调__pollwake()唤醒方法,执行如下流程:
- 先从wait的private中获取相应的pwq;
- 再将pwq的task_struct结构体polling_task赋值给新创建的等待队列项dummy_wait->private
- 最后再调用default_wake_function来唤醒处于睡眠状态的进程,该方法见文章源码解读Linux等待队列中的【小节3.2.1】
执行完pollwake()方法后,之前处于睡眠等待状态的进程便唤醒执行do_select的循环后,这一轮会跳出循环,然后执行poll_freewait来移除该等待队列。
2.4.6 poll_freewait
void poll_freewait(struct poll_wqueues *pwq)
{
struct poll_table_page * p = pwq->table;
int i;
for (i = 0; i < pwq->inline_index; i++)
free_poll_entry(pwq->inline_entries + i);
while (p) {
struct poll_table_entry * entry;
struct poll_table_page *old;
entry = p->entry;
do {
entry--;
free_poll_entry(entry);
} while (entry > p->entries);
old = p;
p = p->next;
free_page((unsigned long) old);
}
}
static void free_poll_entry(struct poll_table_entry *entry)
{
//从等待队列中移除wait
remove_wait_queue(entry->wait_address, &entry->wait);
fput(entry->filp);
}
2.5 select小结
do_select()是整个select的核心过程,主要工作流程如下:
- poll_initwait():设置poll_wqueues->poll_table的成员变量poll_queue_proc为__pollwait函数;同时记录当前进程task_struct记在pwq结构体的polling_task。
- f_op->poll():会调用poll_wait(),进而执行上一步设置的方法__pollwait();
- __pollwait():设置wait->func唤醒回调函数为pollwake函数,并将poll_table_entry->wait加入等待队列 4.poll_schedule_timeout():该进程进入带有超时的睡眠状态。
之后,当其他进程就绪事件发生时便会唤醒相应等待队列上的进程。比如监控的是可写事件,则会在write()方法中调用wake_up方法唤醒相对应的等待队列上的进程,当唤醒后执行前面设置的唤醒回调函数pollwake函数。
- pollwake():先从wait->private的polling_task获取处于等待睡眠状态的目标进程,调用default_wake_function()来唤醒该进程;
- poll_freewait():当进程唤醒后,将就绪事件结果保存在fds的res_in、res_out、res_ex,然后把该等待队列从该队列头中移除。
- 回到core_sys_select(),将就绪事件结果拷贝到用户空间。
以上有个缺陷就是每次会轮询所有的fd的f_op->poll()。
三、poll源码
当应用程序调用poll函数,经过系统调用会执行sys_poll函数。
3.1 sys_poll
[-> fs/select.c]
SYSCALL_DEFINE3(poll, struct pollfd __user *, ufds, unsigned int, nfds,
int, timeout_msecs)
{
struct timespec end_time, *to = NULL;
int ret;
if (timeout_msecs >= 0) { //设置超时
to = &end_time;
poll_select_set_timeout(to, timeout_msecs / MSEC_PER_SEC,
NSEC_PER_MSEC * (timeout_msecs % MSEC_PER_SEC));
}
ret = do_sys_poll(ufds, nfds, to); // 见【小节3.2】
if (ret == -EINTR) {
struct restart_block *restart_block;
restart_block = ¤t->restart_block;
restart_block->fn = do_restart_poll;
restart_block->poll.ufds = ufds;
restart_block->poll.nfds = nfds;
if (timeout_msecs >= 0) {
restart_block->poll.tv_sec = end_time.tv_sec;
restart_block->poll.tv_nsec = end_time.tv_nsec;
restart_block->poll.has_timeout = 1;
} else
restart_block->poll.has_timeout = 0;
ret = -ERESTART_RESTARTBLOCK;
}
return ret;
}
3.2 do_sys_poll
int do_sys_poll(struct pollfd __user *ufds, unsigned int nfds,
struct timespec *end_time)
{
struct poll_wqueues table;
int err = -EFAULT, fdcount, len, size;
//创建大小为256的数组
long stack_pps[POLL_STACK_ALLOC/sizeof(long)];
struct poll_list *const head = (struct poll_list *)stack_pps;
struct poll_list *walk = head;
unsigned long todo = nfds;
if (nfds > rlimit(RLIMIT_NOFILE)) //上限默认为1024
return -EINVAL;
len = min_t(unsigned int, nfds, N_STACK_PPS);
for (;;) {
walk->next = NULL;
walk->len = len;
if (!len)
break;
if (copy_from_user(walk->entries, ufds + nfds-todo,
sizeof(struct pollfd) * walk->len))
goto out_fds;
todo -= walk->len;
if (!todo)
break;
len = min(todo, POLLFD_PER_PAGE);
size = sizeof(struct poll_list) + sizeof(struct pollfd) * len;
walk = walk->next = kmalloc(size, GFP_KERNEL);
}
poll_initwait(&table); //同上【小节2.4.1】
fdcount = do_poll(nfds, head, &table, end_time); //见【小节3.3】
poll_freewait(&table); //同上【小节2.4.6】
for (walk = head; walk; walk = walk->next) {
struct pollfd *fds = walk->entries;
int j;
//将revents值拷贝到用户空间ufds
for (j = 0; j < walk->len; j++, ufds++)
if (__put_user(fds[j].revents, &ufds->revents))
goto out_fds;
}
err = fdcount;
out_fds:
walk = head->next;
while (walk) {
struct poll_list *pos = walk;
walk = walk->next;
kfree(pos);
}
return err;
}
进程可打开文件的上限可通过命令ulimit -n获取,默认为1024
3.3 do_poll
static int do_poll(unsigned int nfds, struct poll_list *list,
struct poll_wqueues *wait, struct timespec *end_time)
{
poll_table* pt = &wait->pt;
ktime_t expire, *to = NULL;
int timed_out = 0, count = 0;
u64 slack = 0;
unsigned int busy_flag = net_busy_loop_on() ? POLL_BUSY_LOOP : 0;
unsigned long busy_end = 0;
// 优化非阻塞的情形
if (end_time && !end_time->tv_sec && !end_time->tv_nsec) {
pt->_qproc = NULL;
timed_out = 1;
}
if (end_time && !timed_out)
slack = select_estimate_accuracy(end_time);
for (;;) {
struct poll_list *walk;
bool can_busy_loop = false;
for (walk = list; walk != NULL; walk = walk->next) {
struct pollfd * pfd, * pfd_end;
pfd = walk->entries;
pfd_end = pfd + walk->len;
for (; pfd != pfd_end; pfd++) {
//见【小节3.4】
if (do_pollfd(pfd, pt, &can_busy_loop,
busy_flag)) {
count++;
pt->_qproc = NULL;
busy_flag = 0; //找到目标事件,可跳出循环
can_busy_loop = false;
}
}
}
//所有的waiters已注册,因此不需要为下一轮循环提供poll_table->_qproc
pt->_qproc = NULL;
if (!count) {
count = wait->error;
if (signal_pending(current)) //有待处理信号,则跳出循环
count = -EINTR;
}
if (count || timed_out) //监控事件触发,或者超时则跳出循环
break;
if (can_busy_loop && !need_resched()) {
if (!busy_end) {
busy_end = busy_loop_end_time();
continue;
}
if (!busy_loop_timeout(busy_end))
continue;
}
busy_flag = 0;
if (end_time && !to) { //首轮循环设置超时
expire = timespec_to_ktime(*end_time);
to = &expire;
}
//【同上2.4.4】
if (!poll_schedule_timeout(wait, TASK_INTERRUPTIBLE, to, slack))
timed_out = 1;
}
return count;
}
3.4 do_pollfd
static inline unsigned int do_pollfd(struct pollfd *pollfd,
poll_table *pwait,
bool *can_busy_poll,
unsigned int busy_flag)
{
unsigned int mask;
int fd;
mask = 0;
fd = pollfd->fd;
if (fd >= 0) {
struct fd f = fdget(fd);
mask = POLLNVAL;
if (f.file) {
mask = DEFAULT_POLLMASK;
if (f.file->f_op->poll) {
pwait->_key = pollfd->events|POLLERR|POLLHUP;
pwait->_key |= busy_flag;
//同上【2.4.2】
mask = f.file->f_op->poll(f.file, pwait);
if (mask & busy_flag)
*can_busy_poll = true;
}
mask &= pollfd->events | POLLERR | POLLHUP;
fdput(f);
}
}
pollfd->revents = mask;
return mask;
}
四、总结
Linux驱动程序提供休眠/唤醒机制:
- 等待队列:当事件满足要求,则唤醒所有的等待队列项。一个进程可以等待多个不同等待队列,以及指定相应的唤醒时回调函数。一般来说,等待状态的进程处于睡眠,回调函数则相应会唤醒进程。
- 轮询函数poll:执行指定的回调函数,将驱动的等待队列给外部代码。
调用链:
select
sys_select
core_sys_select
do_select
poll_initwait
while
poll
poll_schedule_timeout
poll_freewait
poll
sys_poll
do_sys_poll
poll_initwait
do_poll
do_pollfd
poll_schedule_timeout
poll_freewait
我们会发现,select和poll机制的原理非常相近,主要是一些数据结构的不同,最终到驱动层都会执行f_op->poll(),执行__pollwait()把自己挂入等待队列。 一旦有事件发生时便会唤醒等待队列上的进程。比如监控的是可写事件,则会在write()方法中调用wakeup方法唤醒相对应的等待队列上的进程。这一切都是基于底层文件系统作为基石来完成IO多路复用的事件监控功能。
微信公众号 Gityuan | 微博 weibo.com/gityuan | 博客 留言区交流